Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
iScience ; 25(10): 105202, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2041844

ABSTRACT

The ongoing evolution of SARS-CoV-2 requires monitoring the capability of immune responses to cross-recognize Variants of Concern (VOC). In this cross-sectional study, we examined serological and cell-mediated immune memory to SARS-CoV-2 variants, including Omicron, among a cohort of 18-21-year-old Marines with a history of either asymptomatic or mild SARS-CoV-2 infection 6 to 14 months earlier. Among the 210 participants in the study, 169 were unvaccinated while 41 received 2 doses of mRNA-based COVID-19 vaccines. Vaccination of previously infected participants strongly boosted neutralizing and binding activity and memory B and T cell responses including the recognition of Omicron, compared to infected but unvaccinated participants. Additionally, no measurable differences were observed in immune memory in healthy young adults with previous symptomatic or asymptomatic infections, for ancestral or variant strains. These results provide mechanistic immunological insights into population-based differences observed in immunity against Omicron and other variants among individuals with different clinical histories.

2.
Cell ; 185(14): 2434-2451.e17, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1866952

ABSTRACT

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax NVX-CoV2373 were examined longitudinally for 6 months 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though only detectable in 60-67% of subjects at 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in antibodies, while memory T and B cells were comparatively stable. These results may also be relevant for insights against other pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Immunologic Memory , SARS-CoV-2
3.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1650711

ABSTRACT

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Subject(s)
COVID-19 Vaccines/immunology , Memory B Cells/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Ad26COVS1/administration & dosage , Ad26COVS1/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Memory B Cells/metabolism , Memory T Cells/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL